3.1.49 \(\int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx\) [49]

Optimal. Leaf size=109 \[ -\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \sqrt {b \sec (c+d x)} \sin (c+d x)}{b d} \]

[Out]

-2*C*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+c)^(1/2)/
(b*sec(d*x+c))^(1/2)+2*C*sin(d*x+c)*(b*sec(d*x+c))^(1/2)/b/d+2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*
c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*(b*sec(d*x+c))^(1/2)/b/d

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.219, Rules used = {4132, 3856, 2720, 12, 16, 3853, 2719} \begin {gather*} \frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \sin (c+d x) \sqrt {b \sec (c+d x)}}{b d}-\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Sqrt[b*Sec[c + d*x]],x]

[Out]

(-2*C*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*B*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(b*d) + (2*C*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/(b*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps

\begin {align*} \int \frac {B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx &=\frac {B \int \sqrt {b \sec (c+d x)} \, dx}{b}+\int \frac {C \sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx\\ &=C \int \frac {\sec ^2(c+d x)}{\sqrt {b \sec (c+d x)}} \, dx+\frac {\left (B \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{b}\\ &=\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {C \int (b \sec (c+d x))^{3/2} \, dx}{b^2}\\ &=\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \sqrt {b \sec (c+d x)} \sin (c+d x)}{b d}-C \int \frac {1}{\sqrt {b \sec (c+d x)}} \, dx\\ &=\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \sqrt {b \sec (c+d x)} \sin (c+d x)}{b d}-\frac {C \int \sqrt {\cos (c+d x)} \, dx}{\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\\ &=-\frac {2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 B \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \sec (c+d x)}}{b d}+\frac {2 C \sqrt {b \sec (c+d x)} \sin (c+d x)}{b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 73, normalized size = 0.67 \begin {gather*} \frac {2 \left (-C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+B F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+\frac {C \sin (c+d x)}{\sqrt {\cos (c+d x)}}\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(B*Sec[c + d*x] + C*Sec[c + d*x]^2)/Sqrt[b*Sec[c + d*x]],x]

[Out]

(2*(-(C*EllipticE[(c + d*x)/2, 2]) + B*EllipticF[(c + d*x)/2, 2] + (C*Sin[c + d*x])/Sqrt[Cos[c + d*x]]))/(d*Sq
rt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 34.09, size = 456, normalized size = 4.18

method result size
default \(\frac {2 \left (1+\cos \left (d x +c \right )\right )^{2} \left (-1+\cos \left (d x +c \right )\right )^{2} \left (i B \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right )+i C \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )-i C \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right )+i B \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+i C \EllipticE \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-i C \EllipticF \left (\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}, i\right ) \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-C \cos \left (d x +c \right )+C \right ) \sqrt {\frac {b}{\cos \left (d x +c \right )}}}{d b \sin \left (d x +c \right )^{5}}\) \(456\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/d*(1+cos(d*x+c))^2*(-1+cos(d*x+c))^2*(I*B*cos(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x
+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+I*C*cos(d*x+c)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c)
,I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-I*C*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)*sin(d*x+c)+I*B*EllipticF(I*(-1
+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+I*C*EllipticE
(I*(-1+cos(d*x+c))/sin(d*x+c),I)*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-I*C*Ell
ipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-C
*cos(d*x+c)+C)*(b/cos(d*x+c))^(1/2)/b/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.63, size = 143, normalized size = 1.31 \begin {gather*} \frac {-i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B \sqrt {b} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} C \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} C \sqrt {b} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, C \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{b d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*B*sqrt(b)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*B*sqrt(b)*weierstr
assPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - I*sqrt(2)*C*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInv
erse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + I*sqrt(2)*C*sqrt(b)*weierstrassZeta(-4, 0, weierstrassPInverse(-
4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*C*sqrt(b/cos(d*x + c))*sin(d*x + c))/(b*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\sqrt {b \sec {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(1/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)/sqrt(b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))/sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(1/2),x)

[Out]

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(b/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________